Morphogenesis of the Fission Yeast Cell through Cell Wall Expansion

نویسندگان

  • Erdinc Atilgan
  • Valentin Magidson
  • Alexey Khodjakov
  • Fred Chang
چکیده

The shape of walled cells such as fungi, bacteria, and plants are determined by the cell wall. Models for cell morphogenesis postulate that the effects of turgor pressure and mechanical properties of the cell wall can explain the shapes of these diverse cell types. However, in general, these models await validation through quantitative experiments. Fission yeast Schizosaccharomyces pombe are rod-shaped cells that grow by tip extension and then divide medially through formation of a cell wall septum. Upon cell separation after cytokinesis, the new cell ends adopt a rounded morphology. Here, we show that this shape is generated by a very simple mechanical-based mechanism in which turgor pressure inflates the elastic cell wall in the absence of cell growth. This process is independent of actin and new cell wall synthesis. To model this morphological change, we first estimate the mechanical properties of the cell wall using several approaches. The lateral cell wall behaves as an isotropic elastic material with a Young's modulus of 50 ± 10 MPa inflated by a turgor pressure estimated to be 1.5 ± 0.2 MPa. Based upon these parameters, we develop a quantitative mechanical-based model for new end formation that reveals that the cell wall at the new end expands into its characteristic rounded shape in part because it is softer than the mature lateral wall. These studies provide a simple example of how turgor pressure expands the elastic cell wall to generate a particular cell shape.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cell migration and division in amoeboid-like fission yeast

Yeast cells are non-motile and are encased in a cell wall that supports high internal turgor pressure. The cell wall is also essential for cellular morphogenesis and cell division. Here, we report unexpected morphogenetic changes in a Schizosaccharomyces pombe mutant defective in cell wall biogenesis. These cells form dynamic cytoplasmic protrusions caused by internal turgor pressure and also e...

متن کامل

Wall mechanics and exocytosis define the shape of growth domains in fission yeast

The amazing structural variety of cells is matched only by their functional diversity, and reflects the complex interplay between biochemical and mechanical regulation. How both regulatory layers generate specifically shaped cellular domains is not fully understood. Here, we report how cell growth domains are shaped in fission yeast. Based on quantitative analysis of cell wall expansion and ela...

متن کامل

Identification of a putative alpha-glucan synthase essential for cell wall construction and morphogenesis in fission yeast.

The cell wall protects fungi against lysis and determines their cell shape. Alpha-glucan is a major carbohydrate component of the fungal cell wall, but its function is unknown and its synthase has remained elusive. Here, we describe a fission yeast gene, ags1(+), which encodes a putative alpha-glucan synthase. In contrast to the structure of other carbohydrate polymer synthases, the predicted A...

متن کامل

Mechanical feedback coordinates cell wall expansion and assembly in yeast mating morphogenesis

The shaping of individual cells requires a tight coordination of cell mechanics and growth. However, it is unclear how information about the mechanical state of the wall is relayed to the molecular processes building it, thereby enabling the coordination of cell wall expansion and assembly during morphogenesis. Combining theoretical and experimental approaches, we show that a mechanical feedbac...

متن کامل

Cdc42 regulation of polarized traffic in fission yeast

Cdc42 is a key factor in the control of cell polarity and morphogenesis. Fission yeast Cdc42 regulates formin activation and actin cable assembly. Cdc42 is also required for exocyst function, contributing to polarized secretion. Additionally, Cdc42 participates in membrane trafficking, endosome recycling, and vacuole formation. We show here how Cdc42 is required for the correct transport/recycl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Current Biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015